Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430U20-1

FRIDAY, 17 JUNE 2022 – AFTERNOON

SCIENCE (Double Award)

Unit 2 – CHEMISTRY 1 FOUNDATION TIER

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	6	
2.	11	
3.	6	
4.	5	
5.	6	
6.	5	
7.	6	
8.	9	
9.	6	
Total	60	

1 hour 15 minutes

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **7** is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

			Answer all questions.	Examine only
1.	(a)	Rocł salt.	k salt is a mixture of salt and sand. Crystals of pure salt can be obtained from rock	
		A–E	are the steps in the method used but they are in the wrong order.	
		Α	Add water to a sample of rock salt in a beaker and stir	
		В	Heat the solution to evaporate some of the water	
		С	Grind the rock salt into a fine powder	
		D	Filter the mixture to separate the sand from the salt solution	
		Е	Leave the saturated solution in a warm place for a few days so that crystals of salt form	
		Put t	the steps in the correct order. The first step is already included. [2]]
			c	
			first step	
	(b)	A stu	udent was asked to investigate the dyes present in an orange sweet.	
		The	student carried out the following method. There are two errors in the method.	
		•	Draw a line using a ruler and pen on chromatography paper.	
		•	Place a sample of the orange colour on the line.	
		•	Stand the chromatography paper in a beaker and add enough water to just cover the sample.	
		•	Leave the paper to stand until the water rises to the top of the paper.	
		(i)	State the two errors in the method. [2]]
			1	
			2	
	02		© WJEC CBAC Ltd. (3430U20-1)	

03

© WJEC CBAC Ltd.

Turn over.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3430U201 05

Examiner only

2. A year 10 class investigated the reactions between some metals and hydrochloric acid. Their results are summarised in the table below.

Metal	Initial temperature (°C)	Final temperature (°C)	Rise in temperature (°C)	General observations
zinc	21	32	11	a few bubbles
calcium	22	66	44	lots of bubbles, solution spills out of test tube
magnesium	20		31	lots of bubbles
copper	21	21	0	no bubbles
iron	22	25	3	one or two bubbles

Choo				
	ose your answer	from the box.		
Nha	t name is given t	to a reaction which g	Final temperature = ives a rise in temper	ature?
(ii)	Calculate the find the hydrochloric ac	inal temperature for t cid.	the reaction betweer	n magnesium and
	Reason			
	Give a reason Metal	for your choice.		
		c		

Examiner only

(c) The year 10 class then decided to investigate the rate of the reaction between magnesium and hydrochloric acid.

A piece of magnesium was placed in excess hydrochloric acid at 20 °C. The volume of hydrogen produced was recorded every 10 s.

The results obtained are shown in the table.

Time (s)	0	10	20	30	40	50	60
Volume of hydrogen (cm ³)	0	19	31	40	47	53	56

		Examiner
(ii)	The reaction had not finished after 60 s. How does the graph show this?	41
	Put a tick (\checkmark) in the correct box.	1]
	Graph stops at 60 s	
	Graph is still rising at 60s	
	Graph reaches a maximum temperature of 56 °C	
(iii)	Why does the reaction slow down over time?	
	Put a tick (\mathcal{J}) in the correct box. [1]
	The particles collide with less energy so less chance of successful collisions	
	The particles move slower so less chance of successful collisions	430U201
	The particles have less surface area so less chance of successful collisions	ю Ф
	The particles get used up so less chance of successful collisions	
(iv)	Suggest two changes you could make to the hydrochloric acid to make the reaction faster.	2]
(v)	In the reaction between magnesium and hydrochloric acid, magnesium chloride i formed. Magnesium chloride contains Mg^{2+} ions and Cl^- ions.	s
	Give the formula of magnesium chloride.	1]
		11

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

A bei	yllium atom can be represented by the following symbol.		01
	⁹ ₄ Be		
(a)	Choose a number from the box to complete each of the following sentences.	[4]	
	4 5 9 13		
	Each number can be used once, more than once or not at all.		
	Beryllium has protons.		
	The atomic number of beryllium is		
	The mass number of beryllium is		
	Beryllium has neutrons.		
(b)	Beryllium has 4 electrons.		
	Put a tick (\checkmark) in the box that shows the correct electronic structure for beryllium.	[1]	
(C)	Beryllium is found in the compound beryllium fluoride, BeF ₂ .		
	Give the total number of atoms shown in the formula.	[1]	
			\vdash

Examiner only

[1]

4. The table shows various stages in the development of the Earth's atmosphere since its formation 4 500 million years ago.

Stage	Major events	Gases present in the atmosphere
1	volcanic eruptions	carbon dioxide, water vapour, methane, ammonia
2	oceans form	carbon dioxide, methane, ammonia
3	green plants evolve	carbon dioxide, nitrogen, oxygen
4	most carbon dioxide becomes locked in rock and fossil fuels	nitrogen, oxygen, water vapour

(a) Which **one** of these statements best describes how the oceans were formed?Put a tick (✓) in the box next to the correct answer.

Water vapour evaporated to form clouds

The Earth cooled so water vapour condensed

Bacteria and algae turned the water vapour into liquid water

There were no more volcanoes to produce water vapour

(b) Explain why the appearance of green plants was an important stage in the development of the atmosphere. [2]

		Examiner
(C)	The atmosphere today contains nitrogen, oxygen and water vapour.	1]
	Use the following information to identify another gas present.	
	• a Group 0 gas	
	the third most abundant in the atmosphere	
	 used in light bulbs and as an inert atmosphere for welding 	
(d)	Nitrogen can be obtained by heating sodium azide, NaN_3 . Sodium is also produced in the reaction.	
	Complete the balancing of the equation for this reaction.	1]
	2NaN ₃ 2Na + N ₂	
		U201
		3430
		5

Examiner only

5. Drinking water contains a number of ions which are important in the human body. Some of these ions cause hardness in water.

The table shows the concentration of ions in drinking water from four different locations.

Location	Concentration of ions (mg/dm ³ of water)						
	potassium K⁺	ammonium NH ₄ ⁺	calcium Ca ²⁺	fluoride F ⁻	sulfate SO ₄ ^{2–}	nitrate NO ₃ ⁻	
Α	0.1	0.4	0.0	0.0	0.4	0.2	
В	0.0	0.3	0.4	4.4	0.2	0.0	
С	0.2	0.6	2.7	0.4	0.0	0.1	
D	3.4	2.1	1.0	2.1	2.5	2.3	

(a) Which location is likely to have the hardest water?

Put a tick (\checkmark) in the box next to the correct answer.

Α

В

С

D

(b) In which location do people have the least protection against tooth decay from their drinking water?

Put a tick (\mathcal{I}) in the box next to the correct answer.

[1]

[1]

						E	Examiner
6.	(a)	A teo iodid	chnician carried out a f le.	ame test and a silver nitrate te	est on a solution of so	dium	only
		Drav	v one line from each te	est to the correct observation.		[2]	
			Test	C	Observation		
					red flame		
			flame test		yellow flame		
					lilac flame		
				w	/hite precipitate		
			silver nitrate test	cre	eam precipitate		
				yel	ellow precipitate		
	(b)	(i)	When silver nitrate a silver iodide are form Write the formulae of	nd sodium iodide react, sodium ed. sodium nitrate and silver iodid	m nitrate and a precipi de to complete the equ	tate of uation. [2]	
			AgNO ₃ + Nal		+		
		(ii)	Suggest a method yo mixture.	u could use to remove the pre-	ecipitate from the reac	tion [1]	
							5
	14		© WJEC CBAC Ltd.	(3430U20-1)			

Describe the advantages and disadvantages of hard water.	[6 QER]

Element	Melting point (°C)	Boiling point (°C)	Reaction with hot iron	
fluorine	-220	-188	explosive	
chlorine	-101	-34	very fast	
bromine	-7	59	quite fast	
iodine	114		slow	
–25°C	25°C	100°C	150°C	
(ii) Astatine react wit	lies below iodine in Gro	up 7. State how you we	ould expect astatine to	
Give a re	eason for your answer.			[2]
Give a re	eason for your answer.			[2]
Give a re	eason for your answer.			[2]
Give a re	eason for your answer.			[2]
Give a re	eason for your answer.			[2]
Give a re	eason for your answer.			[2]
Give a re	eason for your answer.			[2]

		Evan
(b)	What type of destructive event is likely to happen at a conservative plate boundary? [1]	on
		6
	END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1
		J

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

POSITIVE IONS		NEGATIVE IONS			
Name	Name Formula		Formula		
aluminium	Al ³⁺	bromide	Br ⁻		
ammonium	NH_4^+	carbonate	CO ₃ ²⁻		
barium	Ba ²⁺	chloride	CI		
calcium	Ca ²⁺	fluoride	F ⁻		
copper(II)	Cu ²⁺	hydroxide	OH⁻		
hydrogen	H⁺	iodide	1-		
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻		
iron(III)	Fe ³⁺	oxide	0 ²⁻		
lithium	Li ⁺	sulfate	SO42-		
magnesium	Mg ²⁺				
nickel	Ni ²⁺				
potassium	K ⁺				
silver	Ag ⁺				
sodium	Na ⁺				
zinc	Zn ²⁺				

				1	1			
	0	Helium 2	20 Neon 10	40 Ar 18	84 Krypton 36	131 Xe 54	222 Rn Radon 86	
	~		19 F Fluorine 9	35.5 CI Chlorine	80 Br Bromine 35	127 lodine 53	At Astatine	
	9		16 O 8 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
	2		14 Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi 83	
	4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82	
	က		11 B 5	27 Al 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
щ					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
TABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
DIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIOI					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
EPE	dno	e]		56 F e Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ħ	Gro	Hydrog			55 Mn Manganese 25	99 TC Technetium 43	186 Re Rhenium 75	
					52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
					48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Ac Actinium 89
	2		9 Be Beryllium	24 Mg 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	~		7 Li Lithium 3	23 Na Sodium	39 A Potassium 19	86 Rb 87 37	133 Cs Caesium 55	223 Fr Francium 87

 relative atomic mass atomic number A_r Symbol Name Z /

