Surname
First name(s)

Centre Number

Candidate Number
0

GCSE

3430U20-1

FRIDAY, 17 JUNE 2022 - AFTERNOON

SCIENCE (Double Award)

Unit 2 - CHEMISTRY 1 FOUNDATION TIER

1 hour 15 minutes

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	6	
2.	11	
3.	6	
4.	5	
5.	6	
6.	5	
7.	6	
8.	9	
9.	6	
Total	60	

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
Question 7 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

Answer all questions.

1. (a) Rock salt is a mixture of salt and sand. Crystals of pure salt can be obtained from rock salt.

A-E are the steps in the method used but they are in the wrong order.

A Add water to a sample of rock salt in a beaker and stir
B Heat the solution to evaporate some of the water
C Grind the rock salt into a fine powder
D Filter the mixture to separate the sand from the salt solution
E Leave the saturated solution in a warm place for a few days so that crystals of salt form

Put the steps in the correct order. The first step is already included.

(b) A student was asked to investigate the dyes present in an orange sweet.

The student carried out the following method. There are two errors in the method.

- Draw a line using a ruler and pen on chromatography paper.
- Place a sample of the orange colour on the line.
- Stand the chromatography paper in a beaker and add enough water to just cover the sample.
- Leave the paper to stand until the water rises to the top of the paper.
(i) State the two errors in the method.

1.
2.

(ii) Another student used a correct method and obtained the chromatogram below.

Use the formula to calculate the R_{f} value for pigment 2.

$$
R_{\mathrm{f}}=\frac{\text { distance travelled by the pigment }}{\text { distance travelled by the solvent front }}
$$

$R_{\mathrm{f}}=$ \qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2. A year 10 class investigated the reactions between some metals and hydrochloric acid. Their results are summarised in the table below.

Metal	Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	Final temperature $\left({ }^{\circ} \mathrm{C}\right)$	Rise in temperature $\left({ }^{\circ} \mathrm{C}\right)$	General observations
zinc	21	32	11	a few bubbles
calcium	22	66	44	lots of bubbles, solution spills out of test tube
magnesium	20		31	lots of bubbles
copper	21	21	0	no bubbles
iron	22	25	3	one or two bubbles

(a) (i) State which metal did not react with hydrochloric acid.

Give a reason for your choice.
Metal

Final temperature $=$
(b) What name is given to a reaction which gives a rise in temperature?

Choose your answer from the box.

| endothermic combustion | exothermic | precipitation |
| :---: | :---: | :---: | :---: | hydrochloric acid.

(ii) Calculate the final temperature for the reaction between magnesium and
\qquad
(c) The year 10 class then decided to investigate the rate of the reaction between magnesium and hydrochloric acid.

A piece of magnesium was placed in excess hydrochloric acid at $20^{\circ} \mathrm{C}$. The volume of hydrogen produced was recorded every 10 s .

The results obtained are shown in the table.

Time (s)	0	10	20	30	40	50	60
Volume of hydrogen $\left(\mathrm{cm}^{3}\right)$	0	19	31	40	47	53	56

(i) Plot the volume of hydrogen against time on the grid. Draw a suitable line.

(ii) The reaction had not finished after 60 s . How does the graph show this? Put a tick (\checkmark) in the correct box.

Graph stops at 60s

Graph is still rising at 60 s
\square

Graph reaches a maximum temperature of $56^{\circ} \mathrm{C}$ \square
(iii) Why does the reaction slow down over time?

Put a tick (\checkmark) in the correct box.

The particles collide with less energy so less chance of successful collisions

The particles move slower so less chance of successful collisions

The particles have less surface area so less chance of successful collisions

The particles get used up so less chance of successful collisions

(iv) Suggest two changes you could make to the hydrochloric acid to make the reaction faster.
(v) In the reaction between magnesium and hydrochloric acid, magnesium chloride is formed. Magnesium chloride contains Mg^{2+} ions and Cl^{-}ions.

Give the formula of magnesium chloride.
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3. A beryllium atom can be represented by the following symbol.
(a) Choose a number from the box to complete each of the following sentences.

4
5
9
13

Each number can be used once, more than once or not at all.

Beryllium has \qquad protons.

The atomic number of beryllium is \qquad ...

The mass number of beryllium is \qquad ..

Beryllium has \qquad neutrons.
(b) Beryllium has 4 electrons.

Put a tick (\checkmark) in the box that shows the correct electronic structure for beryllium.

\square
\square
\square
(c) Beryllium is found in the compound beryllium fluoride, BeF_{2}.

Give the total number of atoms shown in the formula.
\qquad
4. The table shows various stages in the development of the Earth's atmosphere since its formation 4500 million years ago.

Stage	Major events	Gases present in the atmosphere
1	volcanic eruptions	carbon dioxide, water vapour, methane, ammonia
2	oceans form	carbon dioxide, methane, ammonia
3	green plants evolve	carbon dioxide, nitrogen, oxygen
4	most carbon dioxide becomes locked in rock and fossil fuels	nitrogen, oxygen, water vapour

(a) Which one of these statements best describes how the oceans were formed?

Put a tick (\checkmark) in the box next to the correct answer.

Water vapour evaporated to form clouds

The Earth cooled so water vapour condensed

Bacteria and algae turned the water vapour into liquid water

There were no more volcanoes to produce water vapour

(b) Explain why the appearance of green plants was an important stage in the development of the atmosphere.
(c) The atmosphere today contains nitrogen, oxygen and water vapour.

Use the following information to identify another gas present.

- a Group 0 gas
- the third most abundant in the atmosphere
- used in light bulbs and as an inert atmosphere for welding
(d) Nitrogen can be obtained by heating sodium azide, NaN_{3}. Sodium is also produced in the reaction.

Complete the balancing of the equation for this reaction.
5. Drinking water contains a number of ions which are important in the human body. Some of these ions cause hardness in water.

The table shows the concentration of ions in drinking water from four different locations.

Location	Concentration of ions (mg/dm ${ }^{3}$ of water)					
	potassium K^{+}	ammonium NH_{4}^{+}	calcium Ca^{2+}	fluoride F^{-}	sulfate $\mathrm{SO}_{4}{ }^{2-}$	nitrate $\mathrm{NO}_{3}{ }^{-}$
	0.1	0.4	0.0	0.0	0.4	0.2
B	0.0	0.3	0.4	4.4	0.2	0.0
C	0.2	0.6	2.7	0.4	0.0	0.1
D	3.4	2.1	1.0	2.1	2.5	2.3

(a) Which location is likely to have the hardest water?

Put a tick (\checkmark) in the box next to the correct answer.

A

B

C

D

(b) In which location do people have the least protection against tooth decay from their drinking water?

Put a tick (\checkmark) in the box next to the correct answer.

A

B

C \square
D

(c) Ionic compounds dissolve in water to form positive and negative ions.

Which two compounds may have dissolved in the drinking water at location \mathbf{B} ?
Put a tick (\checkmark) in the box next to the correct answer.
potassium fluoride and calcium sulfate
ammonium sulfate and potassium nitrate

calcium fluoride and ammonium nitrate
ammonium sulfate and calcium fluoride

(d) (i) Calculate the relative formula mass $\left(M_{\mathrm{r}}\right)$ of calcium sulfate, CaSO_{4}.

$$
A_{r}(\mathrm{Ca})=40 \quad A_{\mathrm{r}}(\mathrm{~S})=32 \quad A_{\mathrm{r}}(\mathrm{O})=16
$$

$$
M_{r}=
$$

(ii) Calculate the percentage by mass of fluorine in calcium fluoride, CaF_{2}.

$$
M_{r}\left(\mathrm{CaF}_{2}\right)=78 \quad A_{\mathrm{r}}(\mathrm{~F})=19
$$

\qquad
6. (a) A technician carried out a flame test and a silver nitrate test on a solution of sodium iodide.

Draw one line from each test to the correct observation.
Examiner

Test

lilac flame

white precipitate

cream precipitate
yellow precipitate
(b) (i) When silver nitrate and sodium iodide react, sodium nitrate and a precipitate of silver iodide are formed.

Write the formulae of sodium nitrate and silver iodide to complete the equation. [2]

$$
\mathrm{AgNO}_{3}+\mathrm{NaI} \longrightarrow
$$

\qquad $+$ \qquad
(ii) Suggest a method you could use to remove the precipitate from the reaction mixture.
\qquad
7. Describe the advantages and disadvantages of hard water.
[6 QER]
\qquad
8. (a) (i) State why sodium is stored in oil in the laboratory.
(ii) Describe the change in appearance when a piece of freshly cut sodium is left for a few minutes.
\qquad
\qquad
(iii) Give the formula of the compound formed when sodium reacts with oxygen.
\qquad
(b) The diagram shows the reaction of sodium with chlorine.

(i) State why it is necessary to carry out this reaction in a fume cupboard.
(ii) Complete and balance the equation for the reaction of sodium and chlorine.

$$
\square \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow \square
$$

(c) The table shows some properties of Group 7 elements.

Element	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$	Reaction with hot iron
fluorine	-220	-188	explosive
chlorine	-101	-34	very fast
bromine	-7	59	quite fast
iodine	114		slow

(i) Put a tick (\checkmark) in the box next to the most likely boiling point for iodine.

(ii) Astatine lies below iodine in Group 7. State how you would expect astatine to react with hot iron.

Give a reason for your answer.
9. (a) In 1915 Alfred Wegener suggested that the Earth's continents were once joined together
9. (a) as one large land mass.

(i) State three pieces of evidence that Alfred Wegener used to support his theory. [3]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Explain why Wegener's theory was not originally accepted by other scientists, but it is today.
\qquad
\qquad
\qquad
\qquad
(b) What type of destructive event is likely to happen at a conservative plate boundary? [1]

END OF PAPER

	Question number	Additional page, if required. Write the question number(s) in the left-hand margin.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

FORMULAE FOR SOME COMMON IONS			
POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al^{3+}	bromide	Br^{-}
ammonium	$\mathrm{NH}_{4}{ }^{+}$	carbonate	$\mathrm{CO}_{3}{ }^{2-}$
barium	Ba^{2+}	chloride	Cl^{-}
calcium	Ca^{2+}	fluoride	F^{-}
copper(II)	Cu^{2+}	hydroxide	OH^{-}
hydrogen	H^{+}	iodide	I^{-}
iron(II)	Fe^{2+}	nitrate	NO_{3}
iron(III)	Fe^{3+}	oxide	O^{2-}
lithium	Li^{+}	sulfate	$\mathrm{SO}_{4}{ }^{2-}$
magnesium	Mg ${ }^{\text {2+ }}$		
nickel	Ni^{2+}		
potassium	K^{+}		
silver	Ag^{+}		
sodium	Na^{+}		
zinc	Zn^{2+}		

THE PERIODIC TABLE

						$\underset{\substack{\text { Hydrogen } \\ 1}}{\mathbf{H}}$											$\stackrel{4}{4}$ Helium 2
$\underset{\substack{\text { Lithium }}}{\stackrel{7}{2}}$	$\stackrel{9}{\mathrm{Be}}$ Beryllium 4											$\begin{gathered} 11 \\ \text { B } \\ \text { Boron } \\ 5 \end{gathered}$		$\stackrel{14}{\mathrm{~N}} \mathrm{~N}$	$\begin{gathered} 16 \\ \text { Oxygen } \\ 8 \end{gathered}$	$\underset{\substack{\text { Fluorine }}}{19}$	20 Ne Neon
$\begin{gathered} 23 \\ \mathrm{Na} \\ \text { Sodium } \\ 11 \end{gathered}$												$\begin{array}{\|c} \hline 27 \\ \text { Alumium } \\ 13 \end{array}$	$\begin{gathered} 28 \\ \mathrm{Si} \\ \text { Silicon } \\ 14 \end{gathered}$		$\begin{gathered} 32 \\ S \\ \substack{34 f u r \\ 16} \end{gathered}$	$\begin{gathered} 35.5 \\ \text { Chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Ar} \\ \text { Argon } \\ 18 \end{gathered}$
$\begin{gathered} 39 \\ \mathrm{~K} \\ \text { Potassium } \\ 19 \end{gathered}$	$\begin{gathered} 40 \\ \text { Ca } \\ \text { Calcium } \\ 20 \end{gathered}$	$\begin{gathered} 45 \\ \text { Sc } \\ \text { Scandium } \\ 21 \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Ti} \\ \text { Titanium } \\ 22 \end{gathered}$	$\stackrel{51}{\stackrel{5}{\text { Vanadium }}}$	$\begin{gathered} 52 \\ \begin{array}{c} 52 \\ \text { Chromium } \\ \text { Cr } \end{array} \end{gathered}$	$\begin{array}{\|c\|} \hline 55 \\ M n \\ \text { Manganese } \\ 25 \end{array}$	$\begin{aligned} & 56 \\ & \text { Fe } \\ & \text { Iron } \\ & 26 \end{aligned}$ $\angle 0$	$\begin{gathered} 59 \\ \text { Co } \\ \text { Cobalt } \\ 27 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Ni} \\ \text { Nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \text { Cu } \\ \text { Copper } \\ 29 \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{Zn} \\ \text { Zinc } \\ 30 \end{gathered}$	$\begin{gathered} 70 \\ \text { Ga } \\ \text { Gallium } \\ 31 \end{gathered}$				$\begin{array}{\|c} 80 \\ \mathrm{Br} \\ \text { Bromine } \\ 35 \end{array}$	$\underset{\substack{84 \\ \text { Krypton } \\ 36}}{\substack{\text { nr } \\ \hline}}$
$\begin{gathered} 86 \\ \text { Rb } \\ \begin{array}{c} \text { Rubidium } \\ 37 \end{array} \end{gathered}$		$\begin{gathered} 89 \\ \mathrm{Y} \\ \text { Ytrium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { Zirconium } \\ 40 \end{gathered}$				$\begin{gathered} 101 \\ \text { Ru } \\ \text { Ruthenium } \\ 44 \end{gathered}$		$\begin{gathered} 106 \\ \text { Pd } \\ \text { Palladium } \\ 46 \end{gathered}$	108 Ag Silver 47		$\begin{gathered} \hline 115 \\ \text { In } \\ \text { Indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { Tin } \\ & 50 \end{aligned}$			$\begin{gathered} 127 \\ 1 \\ \text { Iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \text { Xe } \\ \text { Xenon } \\ 54 \end{gathered}$
$\begin{gathered} 133 \\ \text { Cs } \\ \text { Caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { Barium } \\ 56 \end{gathered}$	$\begin{gathered} 139 \\ \mathrm{La} \\ \text { Lanthanum } \\ 57 \end{gathered}$	$\begin{gathered} 179 \\ \text { Hf } \\ \text { Hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 181 \\ \text { Ta } \\ \text { Tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ W \\ \text { Tungsten } \\ 74 \end{gathered}$	186 Re Rhenium ${ }_{75}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { Osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { Iridium } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \mathrm{Pt} \\ \text { Platinum } \\ 78 \end{gathered}$	$\begin{aligned} & 197 \\ & \mathrm{Au} \\ & \text { Gold } \\ & 79 \end{aligned}$	201 Hg Mercury 80	$\begin{array}{\|c} \hline 204 \\ \mathrm{TT} \\ \text { Thallium } \\ 81 \end{array}$	$\begin{gathered} 207 \\ \mathrm{~Pb} \\ \text { Lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \mathrm{Bi} \\ \text { Bismuth } \\ 83 \end{gathered}$		$\begin{array}{\|c} 210 \\ \text { At } \\ \text { Astatine } \\ 85 \end{array}$	$\begin{gathered} 222 \\ \text { Rn } \\ \text { Radon } \\ 86 \end{gathered}$
$\begin{gathered} 223 \\ \mathrm{Fr} \\ \text { Francium } \end{gathered}$ $\begin{array}{\|c} \text { Franciun } \\ 87 \end{array}$	226 Ra Radium Radium 88	227 Ac Actinium 89					Key										

